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Abstract

Coniferous trees are often dominant species in both boreal and temperate forests, wherein they play critical roles in ecosystem

function. In natural environments, ecosystem stability appears to be the norm, notwithstanding the co-occurrence of insect and microbial

species inherently capable of killing their host trees. Adaptive plasticity of host trees involving inducible mechanisms of resistance against

invading organisms is likely to play a crucial role in these interactions. We hypothesize that systemic-induced resistance represents a

common and important phenomenon in coniferous trees, allowing for a balanced allocation of resources between growth and defense.

Published by Elsevier Ltd.
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1. Introduction

Host plant-mediated interactions between microbes and
insects can be significant factors affecting the survival of
coniferous trees, and thus the structure and function of
temperate forest ecosystems, where they are often domi-
nant species. For example, chronic infections by root
pathogenic fungi are often predisposing factors for bark
beetle outbreaks. Eruptive bark beetle populations can
then attack and kill virtually any host tree over extensive
areas, irrespective of whether or not trees are infected with
pathogens [1,2].

Even though forest pathogens and insects (and in some
cases their microbial associates) pose serious threats to tree
survival, the annual probability of, for example, the death of
any particular tree caused directly by insect attack is relatively
e front matter Published by Elsevier Ltd.
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low. Clearly, trees have evolved effective defensive mechan-
isms against pathogen/insect colonization, a feature that has
allowed these plants, as a group, to survive for millions of
years (reviewed by Franceschi et al. [3]) and to establish stable
plant communities dominated by long-lived individuals. One
contributor to their persistence may be their ability to
respond to fungal infections with localized defense responses
that make induced tissues more resistant to a subsequent
insect attack (e.g. [3–5]). On the other hand, this evidence
appears to be incongruent with the observation that trees
showing symptoms of pathogenic infection are usually more
susceptible to pathogen and insect attack. For example,
conifers visibly suffering from root disease (i.e. symptomatic
trees) are more susceptible to colonization and immediate
mortality caused by bark beetles [6,7]. This apparent contra-
diction may have more to do with spatio-temporal relation-
ships between the attack sites of pathogens and insects than
with species-specific host responses. In other words, the
specific phenotype that one observes may depend on how and

www.elsevier.com/locate/pmpp
dx.doi.org/10.1016/j.pmpp.2006.12.002
mailto:bonello.2@osu.edu


ARTICLE IN PRESS
P. Bonello et al. / Physiological and Molecular Plant Pathology 68 (2006) 95–10496
when a pathogenic infection alters whole-tree physiology in a
way that affects subsequent insect behavior. We will argue
that these phenomena follow general patterns that are
independent of specific pathogen–tree–insect systems.

Others have produced authoritative and in depth reviews
on the ecology of tripartite, angiosperm-based systems (e.g.
[8–10]). This review is not meant to be a comprehensive
analysis of conifer resistance to, and conifer-mediated
interactions between, pathogens and insects. Rather, we will
attempt to synthesize some basic, well-described phenomena
into a hypothesis that will arguably have important implica-
tions for current plant defense theory. We will present a brief
overview of resistance mechanisms, emphasizing the differ-
ences between constitutive and inducible, localized and
systemic defense responses to pathogens that might affect
insect behavior and fitness, and will speculate on the potential
ecological consequences of these phenomena. We will focus
primarily on relationships between two major groups of
biotic stressors of conifers, fungal pathogens and bark
beetles, and therefore on host responses that are expressed
mainly in the phloem of stems and branches of pines.

2. Defense mechanisms

Coniferous trees have evolved both constitutive and
inducible defense systems that deter or kill insects and
inhibit or exclude pathogens physically and/or chemically
[11–25]. Recent fossil evidence suggests that these systems
have been operating for at least the past 45 million years in
the Pinaceae [3,26].

3. Constitutive defenses

Constitutive defenses are present in tissue before
colonization by herbivores or pathogens. The constitutive
system is the first line of defense of all organisms, including
plants, and it comprises a number of physical and chemical
barriers. These are associated with normally occurring
anatomical structures that include resin blisters or resin
cells, commonly found in Abies, Tsuga and Cedrus as well
as more morphologically complex tube-like resin ducts
located in the wood and bark of Picea, Pinus, Larix,
Pseudotsuga and other genera [3]. Phenolic containing
phloem cells, and heavily lignified sclereids and fibers are
also a natural complement in conifer tissues. Pathogens
and insects that attempt to penetrate host tissue are
confronted with a flow of resinous material, toxic phenolics
and physical barriers posed by lignified structures, which
provide immediate proximal obstacles to invasion
[17,18,27–33]. Given that the focus of this paper is on
inducible responses, constitutive defense mechanisms will
not be reviewed further.

3.1. Localized induced resistance

Once the initial constitutive barriers have been compro-
mised, subsequent resistance is thought to involve the
expression of a multitude of mechanisms that are induced
postpenetration [34]. Indeed, plants protect themselves
facultatively by mobilizing chemical defenses shortly after
attack by herbivores or pathogens by various processes,
e.g. the ‘‘hypersensitive response’’ and the ‘‘localized
induced resistance’’ response. In conifers, the inducible
system may include secondary resin [4,17,23,28,35,36] (that
may or may not be associated with traumatic resin duct
formation [28,37–39]) and additional phenolics, leading to
qualitative and quantitative changes in chemical composi-
tion near the colonization site [4,14,19,38,40–44]. Local
changes in cell metabolism, which can occur in a matter of
minutes following challenge, might be viewed as rapid
deployment of defense processes that evolved to respond to
the initial invasion, while changes involving cell division
and differentiation (e.g. necrophylactic periderm forma-
tion, traumatic resin duct formation) are slower processes,
taking days to months to complete, and are aimed at
containing the invasion and enhancing the defense of the
plant against further attack.
In the strictest sense, phytoalexins are low molecular

weight antimicrobial compounds synthesized by plants de

novo upon infection. They represent an extremely diverse
group of secondary metabolic compounds including iso-
flavonoids, pterocarpans, stilbenes and saponins [34]. In
some cases, accumulation of phytoalexins has been shown
to be instrumental in disease resistance [45,46].
In conifers, true phytoalexins are unknown, but pathogen-

induced accumulation of related constitutive antimicrobial
compounds (also known as phytoanticipins) has been
reported [47], including stilbenes (e.g. [48]), diterpenic resin
acids (e.g. [49]), lignans (e.g. [50]) and flavonoids (e.g. [51]).
The localization of some of these classes of compounds has
been investigated. For example, Norway spruce (Picea abies

(L.) Karst.) accumulates phenolics upon pathogenic infection
in specialized phloem polyphenolic parenchyma cells [3].
Whether or not accumulation of these compounds in
response to fungal infection is directly related to resistance
remains to be demonstrated, and in many cases such
accumulations may represent an incidental effect of disease
rather than a true resistance mechanism (e.g. [43]).
Pathogenesis-related (PR) proteins (currently comprising

17 families—http://www.bio.uu.nl/�fytopath/PR-families.
htm) also accumulate following infection, including lytic
enzymes such as b-1,3-glucanases (PR-2 family) and
chitinases (PR-3, -4, -8, -11 families), which are putatively
involved in the degradation of fungal cell walls. They
presumably impact fungal pathogens directly or through
release of elicitors from host or pathogen cell walls that
induce other defense responses (e.g. [52]). Evidence of
accumulation of PR proteins (or their transcripts) in conifers
is not as widespread as with angiospermous, herbaceous
plants. However, this is probably due more to less intensive
investigation in conifers than to a lack of PR-proteins in
these plants. Indeed, expression of various groups of PR-
proteins has been documented in conifers under various
conditions: chitinases (e.g. [53–59]); b-1,3-glucanases
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(e.g. [53,60]); PR-5 (thaumatin-like) group [61]; PR-9
(peroxidase) group (e.g. [58,62,63]); PR-10 (ribonuclease-
type) group (e.g. [59,64,65]); and PR-12 (plant defensins)
group [66].

As the name itself implies, these are all proteins whose
accumulation in host tissues is associated with infection
processes. However, to date, the role of PR-proteins in actual
resistance to pathogens (or insects) remains unclear [67].

A pathogenic invasion may also activate traumatic resin
duct formation and secondary resin production. For
example, in response to fungal inoculations Norway spruce
has been shown to develop large numbers of induced
traumatic resin ducts in the xylem that increase the volume
of resin to fend off successive trauma from either the initial
cause or a secondary invader [3], as well as to cleanse and
seal off the wound [5].

With very few exceptions, studies of defense responses in
conifers to pathogens have mainly addressed localized
induced accumulation of host chemicals immediately
around infection sites (e.g. [68]), with very little knowledge
of the whole-plant effects of pathogenic infections. How-
ever, some recent evidence indicates that fungal pathogens
can induce disease resistance in conifers throughout the
plant in early stages of infection (i.e. pre- or early-

symptomatic stages). This phenomenon, in which prior
infections have been shown to induce resistance in
previously non-infected parts of the plant, is called
systemic induced resistance (SIR) (see [43]) and is
functionally analogous to immunization. Our present
understanding of the role of SIR in conifer–pathogen–
insect interactions is quite limited and lags well behind
what is known about this phenomenon in herbaceous
angiosperms (e.g. [69]).

3.2. Systemic induced resistance

Extensive research in the last 20 years has dissected the
biochemical and molecular bases of SIR, mostly in herbac-
eous model species, particularly tobacco and Arabidopsis.
Many studies in model hosts have shown that, following
hypersensitive cell death, SIR is mediated by, or at least
associated with, the accumulation of the hydroxybenzoic
acid derivative salicylic acid, the linolenic acid derivative
jasmonic acid, and ethylene [67,70–72]. Other phytohor-
mones, e.g. abscisic acid, can also play a role in SIR [73].

Although such extensive knowledge is not available for
conifers, SIR phenotypes against stem and branch pathogens
have been observed in pine in response to plant growth
promoting rhizobacteria [74] and pathogens. For example,
Bonello et al. [75] demonstrated that resistance against the
pitch canker pathogen, Fusarium circinatum Nirenberg and
O’Donnell, can be induced systemically in Monterey pine
(Pinus radiata D. Don) in the field using mechanical
inoculations with the same pathogen. Induced resistance
was sustained and intensified with boost inoculations over the
course of at least one and a half years. The natural occurrence
of induced resistance to pitch canker has been documented in
long-term monitoring plots. At these sites, a number of
Monterey pines that were severely affected by pitch canker in
1996 was shown to be free of disease in 1999 [76] (Storer
et al., unpublished). Furthermore, existing infections had
become contained and no new infections had been recorded,
which suggested that trees in remission were more resistant to
the pathogen. Resistance to pitch canker was confirmed in a
subset of the trees in remission by direct challenge with the
pathogen [77]. In a separate study, Monterey pines in areas
where pitch canker was well established were shown to be
significantly more resistant than trees of this species in areas
where the disease was a more recent occurrence [77]. This
result suggests that exposure to the pathogen resulted in
enhanced disease resistance over time.
Blodgett et al. [78] showed that SIR also occurs in

Austrian pine (Pinus nigra Arnold). When the stems of 4–5
year-old saplings are inoculated with the necrogenic canker
pathogen Sphaeropsis sapinea (Fr.:Fr.) Dyko & Sutton in
Sutton) (syn. Diplodia pinea), and its less aggressive [79]
sister species, Diplodia scrobiculata de Wet, Slippers and
Wingfield [80], the whole stem becomes more resistant to
subsequent inoculations with S. sapinea. The phenomenon
is bidirectional, suggesting that molecular signals move
both acropetally and basipetally in the tree to elicit the SIR
response [78].
Work on the Austrian pine/S. sapinea model pathosystem

is beginning to reveal biochemical changes that are associated
with SIR in the stems. In particular, SIR may be linked, in
part, to enhanced lignin deposition and accumulation of
certain soluble phenolics [43,78], and induction of traumatic
resin ducts and resin flow [39]. Since wounding alone can
have strong regulatory effects on terpenoid biosynthesis [81],
it is possible that traumatic resin composition in systemically
induced trees is also altered in at least one of the three
terpenoid groups, i.e. the monoterpenes, the sesquiterpenes or
the diterpenes. This change may contribute to the expression
of SIR because monoterpenes can differ in their activity
against S. sapinea [82]. Thus, it is plausible that systemic
effects of pathogenic infection on phenylpropanoid and
terpenoid metabolisms, as well as de-differentiation of
phloem and xylem tissues to form traumatic resin ducts
resulting in stronger resin flow, may all contribute to the SIR
phenotype in an integrated manner.
Two components of plant defense remain largely

unexplored in the study of SIR in conifers: necrophylactic
periderm formation and expression of PR and other
proteins. The role of the former in limiting invasion of
pathogens and insects in trees systemically primed by
induction with pathogens is unknown. On the other hand,
a recent study by Wang et al. [83] has begun addressing the
systemic aspects of host–pathogen interactions in Austrian
pine using a proteomics approach. No known PR-proteins
were detected in the stem phloem of trees systemically
primed with S. sapinea and D. scrobiculata among the
differentially expressed proteins, perhaps indicating that in
this system a challenge inoculation is necessary to initiate a
PR-protein response. However, Wang et al. showed that
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small heat shock proteins, among other proteins, accumu-
lated differentially and systemically in pathogen-induced
trees, suggesting a supporting role (as chaperones—e.g.
[84]) for these proteins in the eventual expression of the
SIR phenotype. No other similar cases of potential
‘‘pathogen-induced priming’’ of protein-based defense
responses in conifers have been reported.

4. Ecological consequences of SIR

4.1. Ontogenetic disease resistance

One interesting implication of SIR in conifers is that it
may provide an alternative explanation for what is known
as ontogenetic disease resistance (ODR) (also known as
age-related resistance [85]). ODR refers to resistance to a
pathogen that changes with the developmental stage of the
host, with resistance usually increasing with age. For
example, ODR to white pine blister rust (WPBR), caused
by the exotic and invasive pathogen Cronartium ribicola

J.C. Fisch, has been reported in five-needled pines. ODR
appears to be a significant factor in development of this
disease, at least in sugar pine (Pinus lambertiana Dougl.).
In particular, older trees may suffer little damage from
WPBR, whereas young trees tend to be severely affected
and are often killed [86]. To the best of our knowledge, no
specific physiological, molecular or anatomical studies
have been conducted to characterize this phenomenon.
Nonetheless, this age-dependent expression of resistance
has generically been attributed to developmental changes in
the host. An alternative explanation is that some trees
challenged with the pathogen manifest SIR and this, rather
than ODR, is responsible for lesser impacts of the disease
on older trees. In fact, ODR to WPBR observed in sugar
pine may reflect the cumulative induction of resistance not
only by the rust pathogen but also by other microbes, such
as endophytes and mycorrhizal fungi. Ontogenetic resis-
tance against insects has also been documented, for
example in ponderosa pine against the tip moth Rhyacionia

neomexicana (Dyar) (Lepidoptera: Tortricidae) [87], and
might also be the result of cross-induction of resistance
over the life of the tree/tissues by resident microorganisms.

An SIR basis for ODR is an intriguing concept,
particularly in light of the fact that induced resistance
(and more generally plant responses to stress) appears to
have epigenetic components, making it durable and also
heritable [88–90]. Such transgenerational adaptive plasti-
city could be advantageous for the host tree species by
generating seedlings that are primed to respond more
forcefully to pathogens and insects. However, at present
there is no experimental support for this concept in trees.

4.2. Cross-induction of systemic resistance between

pathogens and insects

An example of cross-induction of resistance in trees was
provided by McNee et al. [91], who demonstrated that
Heterobasidion annosum (Fries) Brefeld induced decreased
feeding by the bark beetle Ips paraconfusus Lanier on pre-
symptomatic ponderosa pine (Pinus ponderosa Lawson) in
areas away from the site of infection. H. annosum is an
important agent of root and butt rot of conifers [92] that is
often involved in predisposition of conifers to eventual
bark beetle-caused mortality [6]. However, this study
demonstrated that systemic resistance against a bark beetle
induced by a root pathogen in pre-symptomatic trees may
be operating in this system. This phenomenon was
associated with biochemical changes in the phloem of
similarly inoculated trees [93], but the exact biochemical
and/or anatomical mechanisms underlying this cross-
induction of resistance remain unknown.
Based on the evidence provided above as well as studies

in angiospermous tree/folivore systems (e.g. [94,95]), it is
clear that trees possess defense traits that are locally and
systemically inducible by pathogens and that can poten-
tially affect insect behavior. However, such host-mediated
interactions between pathogens and insects are not often
studied in an integrated manner [10]. In the context of host-
mediated interactions between root pathogens and tree-
killing bark beetles, for example, it appears that such an
integrated approach might provide significant insight into
factors that can either enhance or diminish stability in
conifer-dominated ecosystems. An improved mechanistic
understanding of these associations could contribute to
development of better management strategies, the practical
value of which could be considerable, given that an
estimated 6 millionm3 of timber are lost every year to root
disease-bark beetle complexes in the western US alone [6].

4.3. A new synthesis

SIR may not contribute to a tree’s defense if the inducing
event is quick and severe enough. Expression of SIR may
also be contingent on which parts of a tree are affected by
pathogens and insects. For example, systemic-induced
susceptibility (SIS) was observed in cases where Austrian
and Italian stone pines were induced on the stem but
challenged on the shoots, providing evidence for organ-
dependent expression of SIR and SIS [78] (Bonello et al.,
unpublished results). Thus, the manifestation of SIR may
be contingent on the type of damage to which a tree is
subjected and the circumstances under which it occurs.
However, we propose that SIR is a critical component of

the dynamic interplay between trees, pathogens and
phloem-feeding insects, i.e. organisms affecting root
systems, stems and branches. Within this specific interac-
tion domain, SIR can be sustained or transiently expressed,
depending on the damage level resulting from the induction
event (Fig. 1).
Besides providing a framework for understanding

specific pathogen–tree–insect associations, the ‘‘SIR hy-
pothesis’’ offers a foundation for expansion of current
plant defense theory, specifically those hypotheses addres-
sing environmental effects on expression of host defense
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such as the growth/differentiation balance hypothesis
(GDBH) [96,97]. The domain of GDBH focuses primarily
on plastic responses of constitutive secondary metabolism
to variation in resource availability [98], and does not
address more or less rapid induced responses such as SIR
to pathogen infection. For example, GDBH predicts a
nonlinear, parabolic response of constitutive secondary
metabolism across a resource gradient (Fig. 2a) [97].
Rapidly growing plants in resource-rich environments are
predicted to have low secondary metabolite concentrations
due to a resource-based trade-off between primary and
secondary metabolic pathways. However, secondary meta-
bolism is predicted to increase under moderate water or
nutrient limitation, as growth is more sensitive to resource
limitation than is carbon assimilation. Consequently,
substrate available for secondary metabolism may increase.
However, in extremely resource-limited environments,
carbon assimilation will also decrease, and secondary
metabolism is predicted to be low due to energy and
substrate constraints on biosynthesis.

Induced accumulation of secondary metabolites in stems
of trees is energetically expensive, rapidly depleting local
carbohydrate reserves, and so must be supported by
photosynthate translocated to the site of de novo biosynth-
esis [99,100]. Furthermore, increasing evidence has
emerged to suggest that the energetic costs of induced
responses can result in tradeoffs with growth or reproduc-
tion (e.g. [101–103]). Although relatively few studies have
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concentrations of compounds involved in defense against
pathogens and insects. However, if the inducing pathogen
is able to grow despite the deployment of localized
defensive responses, the infection will progress, and the
plant will become increasingly stressed by the resulting
resource limitations (e.g. reduction of nutrient and water
absorption in root-diseased trees). In severely diseased
plants, carbon assimilation will decline, and SIR is
predicted to weaken as it transitions from an adaptive to
an energy-constrained response. Eventually the trees would
become symptomatic and systemically susceptible to
subsequent attacks by pathogens and insects.

We propose that SIR, as defined herein, is a common
and important phenomenon in coniferous trees, one that
provides a relatively rapid and effective mechanism for
limiting the invasive potential of microbes and insects, at
least in stems and branches. Whereas more specific forms
of genetic resistance to insect pests and pathogens may also
be operative, the long generation times of most conifers
suggest that centuries are likely required to achieve
significant shifts in the relative frequencies of susceptible
and resistant genotypes within a population. In contrast,
insects and microbes that exploit coniferous hosts have
generation times measured in weeks or months. This
difference in life spans implies that other adaptive
mechanisms must underlie the stability of forested ecosys-
tems dominated by long-lived conifers. We submit that
SIR, inducible by pathogens and effective against both
pathogens and insects [111], is one of these mechanisms.
For example, rapid- and delayed-induced resistance are
thought to exert stabilizing and delayed density-dependent
effects, respectively, on herbivore population density [112].
Therefore, any effects of previous pathogen infection on
expression of induced resistance may influence the trajec-
tory of insect outbreaks. Elucidation of SIR-based
phenomena will advance plant defense theory while
increasing understanding of bottom-up regulation of
herbivore populations and insect outbreaks in conifers.

5. Conclusions

A mechanistic understanding of physiological, biochem-
ical and molecular processes that influence the outcome of
host-mediated interactions, both direct and indirect,
between pathogens and insects can contribute to a richer
understanding of ecosystem function and the ongoing
maturation of plant defense theory. We hypothesize that
SIR is a significant factor in pine stem and branch resistance

to pathogen and lethal insect attack. If this hypothesis is
supported, we would expect that the normal state of a tree
in a forest is resistance (to pathogens and insects) resulting
from a combination of genetic (i.e. constitutive) resistance
and resistance induced by chronic, low-level ‘‘irritations’’
caused by microbes (i.e. infections that do not immediately
result in symptoms). One way to test predictions of the SIR
hypothesis might be by inducing trees with root pathogens
and challenging them with pathogens and/or insects on the
stem or branches at a later stage. A similar approach was
used in a previous field study in which inoculation of large
(i.e. 435-year-old) ponderosa pines with H. annosum

showed systemic effects on both host phloem chemistry
and resistance to insect feeding [91,93]. However, working
with trees along a temporal axis as modeled in Fig. 1, under
field conditions, is very challenging. Induction of SIR
requires the inoculation of large numbers of trees at or
below ground level in a forest setting and a follow-up
period of many years, perhaps up to 10, depending on the
root pathogen used, the inherent susceptibility of specific
host populations to specific strains of a root pathogen,
specific site conditions, etc. In contrast, if space could be
substituted for time, it might be feasible to test some
predictions of the SIR hypothesis much more efficiently.
An arena in which such testing might be possible is offered
by well-defined pocket mortality syndromes. One such
syndrome is produced by the red pine [Pinus resinosa

(Aitman)]/Leptographium terebrantis Barras & Perry
pathosystem in the Great Lakes region [113,114]. In
principle, this system is suited to testing the SIR hypothesis
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in the field because it allows for straight substitution of
space for time (Fig. 3). Moving from the outside into a
mortality pocket is equivalent to moving forward in time
between a root disease-free state to a heavily infected state,
all the way to mortality when the pocket edge is reached.
Based on the SIR hypothesis and our knowledge of root
infection rates in this system [114,115], a constitutive level
of resistance to pathogen and insect attack is predicted at
least 10m away from the pocket margin, with Leptogra-

phium-induced SIR increasing to a maximum somewhere
between this outer area and the pocket margin, and
decreasing sharply to induced susceptibility levels as the
pocket margin is approached. Such varying levels of SIR
could be measured in the stem against both pathogens (e.g.
L. terebrantis itself) and insects (e.g. Ips pini (Say), an
important bark beetle in this system [113,114]). Concur-
rently, variables such as strength of defense responses (e.g.
PR-protein accumulation, phenolic and terpenoid metabo-
lism, anatomical responses, etc.) as well as physiological
traits related to substrate availability (e.g. soil fertility),
effects of varying soil fertility on the host (e.g. tissue
nitrogen content, C:N ratios), photosynthetic rates, and
stomatal conductance, etc., could be measured to integrate
the SIR hypothesis with the GDBH.

While this review focuses specifically on pathogens as
SIR-inducing agents, the reciprocal process might also be
operative, one in which insect feeding induces SIR to
insects and pathogens. At present the evidence for such
reciprocal induction in trees is lacking. Thus, SIR should
be investigated in all possible directions to be able to assess
its ecological significance. Indeed, the SIR hypothesis could
also be tested in other symbioses, since pathogenicity is just
one case in an interactive continuum between plants and
microbes. In this sense, testing of the SIR hypothesis with
pathogens would provide the foundation for work in other
systems, e.g. mutualistic associations such as endophytism
and mycorrhization, for which some evidence exists for
systemic induction of disease resistance in plants (e.g.
[116,117]).
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